

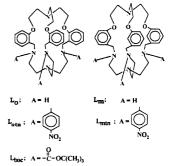
Available online at www.sciencedirect.com

ofOrgano metallic Chemistry

Journal

Volume 689, issue 26, 20 December 2004

www.elsevier.com/locate/jorganchem

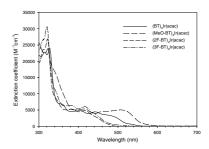

Contents

Regular papers

Pritam Mukhopadhyay, Parimal K. Bharadwaj, Anu Krishnan, Pushpendu K. Das

J. Organomet. Chem. 689 (2004) 4877

Modulation of SHG responses via supramolecular association/dissociation between two complementary cryptands Two sets of complementary cryptands are investigated for supramolecular nitro–amino H-bonding interactions in solutions. The D- π -A cryptand and the unsubstituted cryptand forms 1:1 H-bonded structure.



Wei-Chieh Chang, Andrew Teh Hu, Jiun-Pey Duan, Dinesh Kumar Rayabarapu, Chien-Hong Cheng

J. Organomet. Chem. 689 (2004) 4882

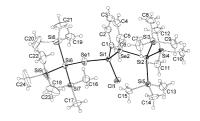
Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands

Several iridium complexes {iridium(III)bis[2-(3-methoxyphenyl)-1,3-benzothiozolato-N,C²] acetylacetonate (MeO-BT) $_2$ Ir(acac), iridium(III)bis[2-(2,4-difluorophenyl)-1,3-benzothiozolato-N,C²] acetylacetonate (2F-BT) $_2$ -Ir(acac), and iridium(III)bis[2-(2,4-difluorophenyl)-6-fluoro-1,3-benzothiozolato-N,C²] acetylacetonate (3F-BT) $_2$ Ir(acac)} having different substituents on 2-phenylbenzothiazole have been synthesized.

Joan Albert, J. Magali Cadena, Jaume Granell, Xavier Solans, Mercè Font-Bardia

J. Organomet. Chem. 689 (2004) 4889

Regioselective cyclomanganation of Schiff bases. An unexpected effect of chloro substituents The synthesis of new metallacycles of benzylbenzylidene-amines by using $[MnMe(CO)_5]$ as metallating agent is reported. The results described suggest that cyclomanganation takes place by the formation of a four-centered transition state, involving the C–H and Mn– C_{acetyl} bonds, in the acetyl coordination complex formed in the first step of the reaction.

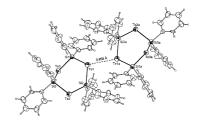

iv Contents

Heike Lange, Uwe Herzog, Horst Borrmann, Bernhard Walfort

J. Organomet. Chem. 689 (2004) 4897

Organosilicon hypersilylchalcogenolates and related compounds

Reaction of potassium hypersilylchalcogenolates (Me₃Si)₃SiEK (E = S, Se, Te) with organochlorosilanes R_{4-x}SiCl_x (R = Me, Ph; x = 1-4) and methylchlorodisilanes (Si₂Me₃Cl, 1,2-Si₂Me₄Cl₂) yields organosilicon hypersilylchalcogenolates [(Me₃Si)₃SiE]_xSiR_{4-x} (x = 1-4) and [(Me₃Si)₃SiE]_xSiPl_{6-x} (x = 1, 2). A partial substitution product, [(Me₃Si)₃SiSe]₂SiPhCl (2) has been obtained by reaction of PhSiCl₃ with 1.5 equivalents (Me₃Si)₃SiSeK. Besides characterization by 1 H, 13 C, 29 Si, 77 Se and 125 Te NMR spectroscopy the compounds [(Me₃Si)₃SiTe]₂SiPh₂ (1), [(Me₃Si)₃SiSe]₂SiPhCl (2) and [(Me₃Si)₃SiSe]₂SiMe₄ (3) have also been analyzed by crystal structure analyses.



Uwe Herzog, Heike Lange, Horst Borrmann, Bernhard Walfort, Heinrich Lang

J. Organomet. Chem. 689 (2004) 4909

Dimeric and trimeric diorganosilicon chalcogenides $(PhRSiE)_{2,3}$ (E = S, Se, Te; R = Ph, Me)

Ph₂SiCl₂ and PhMeSiCl₂ react with Li₂E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)₃ (R = Ph: **1a**–**3a**, R = Me: *cisltrans*-**4a** (E = S), *cisltrans*-**5a** (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)₂ (R = Ph: **1b**–**2b**, R = Me: *cisltrans*-**4b** (E = S), *cisltrans*-**5b** (E = Se)) have been observed as by-products. **1a**–**5b** have been characterized by multinuclear NMR spectroscopy (¹H, ¹³C, ²⁹Si, ⁷⁷Se, ¹²⁵Te). Four- and six-membered ring compounds differ significantly in ²⁹Si and ⁷⁷Se chemical shifts as well as in the value of ¹J_{SiSe}.

Note

Ulrich Herber, Kerstin Ilg, Helmut Werner

J. Organomet. Chem. 689 (2004) 4917

Preparation and molecular structure of a dinuclear rhodium complex having an unbalanced (15+17)-electron count

On stepwise reaction of $[Rh_2(acac)_2\{\mu-C(p-tol)_2\}_2(\mu-Sb^iPr_3)]$ (1) with PMe₃ and CO the unsymmetrical dinuclear complex $[Rh_2-(acac)_2(PMe_3)\{\mu-C(p-tol)_2\}_2(\mu-CO)]$ (3) is formed, which owing to the X-ray crystal structure contains the CO in a bridging and the phosphine ligand in a terminal position.

Book review	4921
Author Index of Volume 689	
Subject Index of Volume 689	4933
Contents of Volume 689	5001

Contents

The Publisher encourages the submission of articles in electronic form thus saving time and avoiding rekeying errors. Please refer to the online version of the Guide for Authors at http://www.elsevier.com/locate/jorganchem

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com for more information.

CONTENTS This journal is part of **ContentsDirect**, the *free* alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for ContentsDirect online at: www.elsevier.com/locate/contentsdirect